روش هم محلی سینک برای معادلات انتگرالی فردهلم نوع دوم منفرد به طور ضعیف
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم
- author نسترن علی نیا
- adviser محمد ضارب نیا
- Number of pages: First 15 pages
- publication year 1390
abstract
در این پایان نامه، روش های عددی جدید برای معادلات انتگرالی خطی فردهلم نوع دوم با هسته تکین ضعیف را ارائه می دهیم. این روش ها توسط تقریب سینک با تبدیل هموار که تکنیک موثری برای نقاط تکین معادلات است، تعمیم داده شده اند. مثال های عددی نشان می دهد که روش ها به همگرایی نمایی می انجامد و از این نظر نتایج قبلی را که تا کنون فقط همگرایی چندجمله ای را گزارش کرده اند بهبود می بخشد. همچنین جواب تقریبی برای مسائلی از حساب تغییرات با استفاده از روش سینک-گالرکین ارائه شده است. این تقریب، مسائل را به سیستم صریح معادلات جبری تبدیل می کند. در پایان از مثال های عددی برای نشان دادن دقت و کارایی روش های ارائه شده استفاده کرده ایم.
similar resources
حل عددی معادلات انتگرالی فردهلم خطی نوع دوم با استفاده از روش هم محلی سینک
ابتدا تقریب سینک را بررسی نموده سپس حل عددی معادلات انتگرال فردهلم نوع دوم را با استفاده از روش هم محلی سینک ارائه می دهیم. همچنین همگرایی تقریب سینک را برای این دسته از معادلات انتگرالی به صورت تحلیلی بررسی کرده و نشان می دهیم مرتبه همگرایی روش، نمایی و به صورت ((o(e^(-k?n است که k مستقل از n می باشد.
تقریب موجکی هرمیتی مثلثاتی برای معادلات انتگرالی نوع دوم با هسته به طور ضعیف منفرد
چکیده ندارد.
15 صفحه اولروش های هم محلی و هم محلی تکراری برای رده ای از معادلات انتگرال ولترای به طور ضعیف منفرد
چکیده ندارد.
15 صفحه اولحل عددی معادلات انتگرال فردهلم نوع دوم با هسته منفرد ضعیف بر پایه تقریب سینک
در این پایان نامه روش های عددی جدید بر پایه تقریب سینک برای حل معادلات انتگرالی فردهلم خطی نوع دوم با هسته منفرد ضعیف g(t)=?u(t)-?|t-s|^(p-1)k(t,s)u(s)ds a?t?b پیشنهاد شده است . معادلاتی از این نوع اغلب در کاربردهای عملی مانند فیزیکی (طبیعی) و مهندسی ، مسائل الکترو استاتیک ، مسئله دیریکله ، مسئله پتانسیل ، مسئله انتقال حرارت تابشی ، مسائل انتقال ذرات از اختر فیزیک ، مسائل راکتور و بر هم کن...
15 صفحه اولیک روش هم محلی گسسته برای حل معادلات انتگرال-دیفرانسیل فردهلم با هسته منفرد ضعیف
برای حل معادلات انتگرال دیفرانسیل فردهلم با هسته منفرد ضعیف ابتدا معادله انتگرال دیفرانسل را با کمک فرمولهای تربیع(کوادراتور) بر پایه ضرب انتگرالی باز نویسی می کنیم. سپس یک روش هم محلی چند جمله ای تکه ای را روی یک شبکه مدرج به کار می بریم. با این روش ما قسمت های هموار انتگرال را بااستفاده از درونیابی چند جمله ای تکه ای تقریب می زنیم، و سپس از قسمت های باقیمانده انتگرال دقیق می گیریم.سپس همگرایی...
15 صفحه اولروش های هم محلی و هم محلی تکراری برای یک خانواده از معادلات انتگرال ولترابه طور ضعیف منفرد
در این پایان نامه خواص همگرایی روش های هم محلی و هم محلی تکراری اسپلاینی، برای یک معادله انتگرال ولترای به طور ضعیف منفرد را بررسی می کنیم، این کار روش های عددی مربوط به مطالعات قبلی در مورد این نوع معادلات با هسته غیر فشرده را تکمیل می کند.
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023